Projective Hilbert A ( D )

نویسندگان

  • Jon F. Carlson
  • Douglas N. Clark
  • Ciprian Foias
  • Jim Williams
چکیده

Jim Williams died in 1983. The surviving three authors are pleased to dedicate this paper to his memory. Abstract. Let C denote the category of Hilbert modules which are similar to con-tractive Hilbert modules. It is proved that if H 0 ; H 2 C and if H 1 is similar to an isometric Hilbert module, then the sequence 0 ! H 0 ! H ! H 1 ! 0 splits. Thus the isometric Hilbert modules are projective in C. It follows that Ext n C (K;H) = 0, whenever n > 1, for H; K 2 C. In addition, it is proved that (Hilbert modules similar to) unitary Hilbert modules are projective in the category H of all Hilbert modules. Connections with the conjecture that C is a proper subset of H are discussed.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

$n$-cocoherent rings‎, ‎$n$-cosemihereditary rings and $n$-V-rings

 Let $R$ be a ring‎, ‎and let $n‎, ‎d$ be non-negative integers‎. ‎A right $R$-module $M$ is called $(n‎, ‎d)$-projective if $Ext^{d+1}_R(M‎, ‎A)=0$ for every $n$-copresented right $R$-module $A$‎. ‎$R$ is called right $n$-cocoherent if every $n$-copresented right $R$-module is $(n+1)$-coprese-nted‎, ‎it is called a right co-$(n,d)$-ring if every right $R$-module is $(n‎, ‎d)$-projective‎. ‎$R$...

متن کامل

Projective Hilbert A(D)-Modules

Let C denote the category of Hilbert modules which are similar to contractive Hilbert modules. It is proved that if H0, H ∈ C and if H1 is similar to an isometric Hilbert module, then the sequence 0 → H0 → H → H1 → 0 splits. Thus the isometric Hilbert modules are projective in C. It follows that ExtC (K, H) = 0, whenever n > 1, for H, K ∈ C. In addition, it is proved that (Hilbert modules simil...

متن کامل

The Hilbert scheme of the diagonal in a product of projective spaces

The diagonal in a product of projective spaces is cut out by the ideal of 2×2-minors of a matrix of unknowns. The multigraded Hilbert scheme which classifies its degenerations has a unique Borel-fixed ideal. This Hilbert scheme is generally reducible, and its main component is a compactification of PGL(d)/PGL(d). For n = 2 we recover the manifold of complete collineations. For projective lines ...

متن کامل

On the Hilbert polynomials and Hilbert series of homogeneous projective varieties

Among all complex projective varieties X →֒ P(V ), the equivarient embeddings of homogeneous varieties—those admitting a transitive action of a semi-simple complex algebraic group G—are the easiest to study. These include projective spaces, Grassmannians, non-singular quadrics, Segre varieties, and Veronese varieties. In Joe Harris’ book “Algebraic Geometry: A First Course” [H], he computes the ...

متن کامل

The geometry of the parabolic Hilbert schemes

Let X be a smooth projective surface and D be a smooth divisor over an algebraically closed field k. In this paper, we discuss the moduli schemes of the ideals of points of X with parabolic structures at D. They are called parabolic Hilbert schemes. The first result is that the parabolic Hilbert schemes are smooth. And then some of the studies of Ellingsrud-Strømme, Göttsche, Cheah, Nakajima an...

متن کامل

Propositional systems, Hilbert lattices and generalized Hilbert spaces

With this chapter we provide a compact yet complete survey of two most remarkable “representation theorems”: every arguesian projective geometry is represented by an essentially unique vector space, and every arguesian Hilbert geometry is represented by an essentially unique generalized Hilbert space. C. Piron’s original representation theorem for propositional systems is then a corollary: it s...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1994